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Abstract Wavelet-based methods open a door for numerical solution of differential
equations. Stiff systems, a special type of differential equation systems, have the soluti-
ons with the components that exhibit complex dynamic behaviours such as singularities
and abrupt transitions, which are hard to be captured by the typical numerical method
or incur the computing complexity. This paper proposed to use the Wavelet-Galerkin
scheme for solving stiff systems. Daubechies wavelet based connection coefficients,
required in the Wavelet-Galerkin scheme, were computed using an algorithm that we
recently rectified. The Lagrange multiplier method was incorporated into the wavelet
approach in order to optimise the fitting of the initial conditions. Comparative studies
were also carried out between the proposed approach and the Haar wavelet approach.

Keywords Wavelet-based method · Wavelet-Galerkin method · Connection
coefficients · Stiff system · Numerical solution · Daubechies wavelet

1 Introduction

Many systems in science and engineering are governed by differential equations.
Obtaining the solutions of these differential equation systems is essential for system
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analysis, design, optimization, control, etc. While analytical solutions can be derived
for many such systems; there are much more systems that cannot be solved analy-
tically. This has been motivating the development of various numerical methods for
differential equations.

There have been several well-developed numerical methods for differential
equation systems. Typical ones are the finite difference, segmentation and Runge–
Kutta methods. All these methods work well when system solutions are regular.

However, some systems such as stiff systems have the solutions with the components
that display complex dynamic behaviours like singularities and abrupt transitions.
At the stiff part, generally, traditional numerical methods cannot give satisfactory
solutions of these systems because either the round-off errors may cause instability of
the numerical method by using of a small step size or the pay to adding solution
complexity. This motivates the development of innovative methods for numerical
computing of the systems more accurately and effectively. Wavelet based methods
are a good candidate.

Hsiao proposed a wavelet method, which is based on Haar wavelet, to linear stiff
systems [5]. Similar idea was used by Liu and Tadé for development of the so-called
wavelet-collocation method [6] based on the Daubechies wavelet, which was con-
structed by Daubechies [4]. This paper will develop a wavelet-based approach to
stiff systems. We propose to use the Wavelet-Galerkin scheme with the connection
coefficients being computed using an algorithm that we recently rectified [7], which
is a significant improvement and correction to the original work by Chen et al. [3].
Realising that previous methods, traditional and wavelet based, have significant nume-
rical computing errors around the initial conditions, we also propose to incorporate
the Lagarange multiplier based optimization into the wavelet approach to significantly
reduce the computing errors. Moreover, we will compare the results from our approach
and those from the Haar wavelet method.

The paper is organised as follows. To make the paper self-contained, we discuss
some wavelet properties and the algorithm for computing the connection coefficient
in Sect. 2. In Sect. 3, we apply the Wavelet-Galerkin scheme based on the Daubechies
wavelet to a linear stiff system. In order to properly fit the initial conditions, Sect. 4
introduces the Lagrange multiplier to optimise the numerical solutions. Comparative
studies between the proposed approach and the Haar approach are carried out in Sect. 5.
Section 6 concludes the paper.

2 Wavelet-based scheme for solving linear differential equations

2.1 Daubechies orthonormal wavelet

In 1992, Daubechies [4] constructed a family of compactly supported orthonormal
wavelets, which include members from highly localized to highly smooth. Each wave-
let number is governed by a set of L coefficients {pk : k = 0, . . . , L − 1} through the
following two-scale relations:

φ(x) =
L−1∑

k=0

pkφ(2x − k) (1)
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Fig. 1 Basic scaling functions and wavelets for L = 4, 6 and 20, respectively

and

ψ(x) =
L−1∑

k=0

(−1)k p1−kφ(2x − k) (2)

where φ(x) andψ(x) are called the scaling function and mother wavelet, respectively,
with φ(0) = φ(L − 1) = 0. The translations and dilations of level J for φ(x) and
ψ(x) are respectively defined as

φJ,k(x) = 2J/2φ(2J x − k), ψJ,k(x) = 2J/2ψ(2J x − k). (3)

The fundamental supports of φ(x) and ψ(x) are the finite intervals [0, L − 1] and
[1 − L/2, L/2], respectively. See Fig. 1 for instance.

By [2], the scaling function φ(x) has the following property

∞∑

l=−∞
lnφ(x − l) =

n∑

j=0

(−1) j
(

n
j

)
Mφ

j xn− j , n = 0, 1, . . . , L/2 − 1, (4)

where Mφ
j is the j th moment of φ(x) and is defined by the following equation

Mφ
j =

∫ ∞

−∞
x jφ(x)dx

with the initial condition Mφ
0 = 1. If denoting by φ(n)(x) the nth derivative of the
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scaling function φ(x), then we have

φ(n)(x) = dnφ(x)

dxn
= d

dx
φ(n−1), φ(0) = φ(x). (5)

It is easy to know that the compact support of φ(n)(x) is [0, L − 1]. Applying (1) to
(5) gives

φ(n) = 2n
L−1∑

k=0

pkφ
(n)(2x − k), n = 0, 1, . . . , L/2 − 1. (6)

2.2 Computation of the connection coefficients

Now let us briefly review the computation of the connection coefficients for

�n
k (x) =

∫ x

0
φ(n)(y − k)φ(y)dy, (7)

which is the integral of the product of the scaling function φ(x) and its nth derivative
φ(n)(x − k). We will use the algorithm that we recently rectified in [7], which is a
significant improvement and correction to the original work by Chen et al. [3]

By the properties of the scaling function φ(x) listed in Sect. 2.1 and straightfor-
ward computation, it is easy to verify the following relationships for n = 0, 1, . . . ,
L/2 − 1 and all integers k:

�n
k (x) = �n

k (L − 1) for x ≥ L − 1, (8)

�n
k (x) = 0 for |k| ≥ L − 1, or x ≤ 0 or x ≤ k, (9)

�n
−k(L − 1) = (−1)n�n

k (L − 1), (10)

�n
−k(x) = (−1)n�n

k (L − 1) for x + k ≥ L − 1. (11)

Equations 1, 6 and 7 give

�n
k (x) = 2n−1

L−1∑

i, j=0

pi p j�
n
2k+i− j (2x − j). (12)

Let

�n(L − 1) = [�n
0 (L − 1), �n

1 (L − 1), . . . , �n
L−2(L − 1)]T
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and take x = L −1 in (12), then from [3], we can easily obtain the values of �n
k (L −1)

through the following algorithm:

�n(L − 1) = D�n(L − 1)

with normalization condition

L−2∑

k=0

kn�n
k (L − 1) = n!

2
,

where D = (dl,m) for l,m = 1, 2, . . . , L − 1,

dl,m = 2n−1

⎛

⎝
∑

µ1(l, m)

pi p j + (−1)n
∑

µ2(l, m)

pi p j

⎞

⎠ ,

and

µλ(l,m)= {(i, j) : 0 ≤ i, j ≤ L − 1 & 2(l − 1)+ i − j = (−1)λ+1(m − 1)}, λ= 1, 2.

After getting the values of �n
k (x) for x = L − 1, we can compute the values of �n

k (x)
for x = 0, 1, . . . , L −2 and k = 2− L , 3− L , . . . , L −2 using the methods described
in [3,7]. Let

�n = [�n(1), . . . , �n(L − 2)]T (13)

where

�n(i) = [�n
i−L+2(i), . . . , �

n
i−1(i)]T , i = 1, 2, . . . , L − 2. (14)

Then we have the following system for �n
k (x) with x = 1, . . . , L − 2 and k =

x − L + 2, . . . , x − 1.

Q̃�n = (21−n Ĩ − Q)�n = d, (15)

where Ĩ is a square unit matrix of order (L − 2)2, Q = (Qi, j ) is a square matrix
of order (L − 2)2 with Qi, j = (qi, j,k,m) being a (L − 2) × (L − 2) matrix and
qi, j,k,m = p2i− j pL−1−2k+m, and

d = [d1, d2, . . . , d L−2]T ,
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with

di = [d((i − 1)(L − 2)+ 1), . . . , d((i − 1)(L − 2)+ k), . . . , d(i(L − 2)]T , (16)

d((i − 1)(L − 2)+ k) =
∑

µ2(i,k,L)

pi1 p j1�
n
2(i−(L−2)+(k−1))+i1− j1

(L − 1), (17)

µ2(i, k, L) = {(i1, j1) ∈ µ(i, k, L) : 2i − j1 ≥ L − 1 or 2k + i1 ≤ L − 1}. (18)

It is worth mentioning that Q has eigenvalues 2−λ(λ = 0, 1, . . . , L − 2), but 2, we
can easily obtain the value of �n for n = 0 from Eq. 15. To end the study for n > 0,
we need the following relation

x−1∑

l=x−L+2

ln�n
l (x) = n!θ1(x)−

L−2∑

l=L−1−x

ln�n
l (L − 1), (19)

which can be rewritten in the following vector equation form

[(x − L + 2)n, . . . , (x − 1)n]�n(x) = n!θ1(x)−
L−2∑

l=L−1−x

ln�n
l (L − 1). (20)

Combining Eq. 15 and 20 gives the value of �n for n > 0. More precisely, for
i = 1, 2, . . . , n,

(1) replace the i th row of Q̃i,i = 21−n I − Qi,i and Q̃i, j = −Qi, j by [(i − L +
2)n, . . . , (i − 1)n] and a zero row vector of order L − 2, respectively;

(2) replace d((i − 1)(L − 2) + i), the i th element of di , by n!θ1(i) − ∑L−2
l=L−1−i

ln�n
l (L − 1).

2.3 Wavelet-based scheme for solving linear systems

Now we are ready to develop a wavelet-based scheme for solving linear systems. The
scheme will be applied to linear stiff systems later in this paper.
Consider the following linear system

ẋ(t)= x(t)A, x(0)= x0, x = (x1, . . . , xn)∈ Rn, A = (ai, j )n×n, t ∈ [0, N ].
(21)

The wavelet approximation of level J for the unknown x is given by

x(t) = �J (t)B, (22)

where �J (t) = (φJ,k(t)) is a row vector and B = (bk,i ), k = 2 − L , . . . , 2J − 1, i =
1, . . . , n. Substituting Eq. 22 into Eq. 21 and multiplying both sides of (21) by
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(�J (t))T from the left, and then integrating for t from t = 0 to t = N , we have

C1
J B = C0

J BA, (23)

where

Ci
J = (ci

J,l,k) =
(∫ N

0
φ
(i)
J,k(t)φJ,l(t)dt

)
, l, k = 2 − L , . . . , 2J − 1, i = 0, 1.

From Eq. 7, we have

c1
J,l,k = 2J [φ(2J N − k)φ(2J N − l)−φ(−l)φ(−k)− �1

l−k(2
J N − k)+�1

l−k(−k)]
≡ c̃1

J,l,k − 2Jφ(−l)φ(−k), (24)

c0
J,l,k = �0

l−k(2
J N − k)− �0

l−k(−k), (25)

which implies that

C̃1
J B − C0

J BA − 2J/2(�J (0))
T x0 = 0 (26)

or

(C0
J )

−1C̃1
J B − BA − 2J/2(C0

J )
−1(�J (0))

T x0 = 0, (27)

where C̃1
J = (̃c1

J,l,k). M AT L AB function LY AP(·) gives the solution of unknown
matrix B. Then from Eq. 22, we get the numerical solution for system (21).

3 Wavelet-based method for solving linear stiff systems

In this section, we switch to a case study for linear stiff systems.
Consider the following linear stiff system, which was also studied in [1,5]

(
ẋ(t)
ẏ(t)

)
=

(−1 95
−1 −97

) (
x(t)
y(t)

)
,

(
x(0)
y(0)

)
=

(
1
1

)
, t ∈ [0, 1], (28)

Approximate the solutions of x(t) and y(t) by wavelet series of level J as we did in
Sect. 2.3

x(t) =
2J −1∑

k=2−L

xJ,kφJ,k(t), y(t) =
2J −1∑

k=2−L

yJ,kφJ,k(t), (29)
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where xJ,k and yJ,k are the wavelet coefficients to be determined. Then we have

ẋ(t) =
2J −1∑

k=2−L

xJ,k
dφJ,k(t)

dt
,

ẏ(t) =
2J −1∑

k=2−L

yJ,k
dφJ,k(t)

dt
.

(30)

Now substitute Eqs. 29 and 30 into (28). The Galerkin discretization scheme implies
that

2J −1∑

k=2−L

xJ,k

∫ 1

0
φJ,l(t)

dφJ,k(t)

dt
dt = −

2J −1∑

k=2−L

xJ,k

∫ 1

0
φJ,l(t)φJ,k(t)dt

+ 95
2J −1∑

k=2−L

yJ,k

∫ 1

0
φJ,l(t)φJ,k(t)dt, (31)

2J −1∑

k=2−L

yJ,k

∫ 1

0
φJ,l(t)

dφJ,k(t)

dt
dt = −

2J −1∑

k=2−L

xJ,k

∫ 1

0
φJ,l(t)φJ,k(t)dt

− 97
2J −1∑

k=2−L

yJ,k

∫ 1

0
φJ,l(t)φJ,k(t)dt, (32)

c1
J,l,k =

∫ 1

0
φJ,l(t)

dφJ,k(t)

dt
dt, c0

J,l,k =
∫ 1

0
φJ,l(t)φJ,k(t)dt. (33)

and

c1
J,l,k = 2J [φ(2J − l)φ(2J − k)−φ(−l)φ(−k)+�1

l−k(−k)−�1
l−k(2

J − k)], (34)

c0
J,l,k = �0

l−k(2
J − k)− �0

l−k(−k). (35)

Substituting Eqs. 34 and 35 into 31 and 32 leads to

2J −1∑

k=2−L

xJ,k X1
J,k +

2J −1∑

k=2−L

yJ,kY 1
J,k = 2J/2φ(−l), (36)

2J −1∑

k=2−L

xJ,k X2
J,k +

2J −1∑

k=2−L

yJ,kY 2
J,k = 2J/2φ(−l), (37)
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Table 1 The values of x from STHW and DAUS methods for L=4 and J=3

Method EXACTS STHW DAUS

t=0.0 1.000000000000000e+000 1.000000000000000e+000 8.002033059382285e−001
0.125 1.574165520629585e+000 1.170043138928742e+000 1.592634154268434e+000
0.25 1.225966227040173e+000 1.124362384204138e+000 1.221290493826090e+000
0.375 9.547834576680082e−001 9.287259243596476e−001 9.514515082537287e−001
0.5 7.435861044954686e−001 7.363958370395243e−001 7.412328383885984e−001
0.625 5.791054404620863e−001 5.766533886324167e−001 5.775516262729533e−001
0.75 4.510077705127837e−001 4.497853077422582e−001 4.501220978634202e−001
0.875 3.512452048466444e−001 3.503872997086948e−001 3.509296510848822e−001
1.0 2.735500405846427e−001 2.728449871207873e−001 2.735440290699423e−001

Table 2 The values of y from STHW and DAUS methods for L=4 and J=3

Method EXACTS STHW DAUS

t=0.0 1.000000000000000e+000 1.000000000000000e+000 1.197998596464597e+000
0.125 −1.656395448677543e−002 3.872369404066052e−001 −4.092022002223580e−002
0.25 −1.290490761490572e−002 8.805290247563069e−002 −1.271886319519464e−002
0.375 −1.005035218597880e−002 1.519601163671173e−002 −1.001279383485378e−002
0.5 −7.827222152583880e−003 −1.508516627133777e−003 −7.802514120888475e−003
0.625 −6.095846741706172e−003 −4.509281044915388e−003 −6.079490318693153e−003
0.75 −4.747450215924039e−003 −4.344393530535735e−003 −4.738127341331357e−003
0.875 −3.697317945754152e−003 −3.590740201298463e−003 −3.693996327369718e−003
1.0 −2.879474111417292e−003 −2.847665704994232e−003 −2.879410832313992e−003

for l = 2 − L , . . . , 2J − 1, where

X1
J,k = 2J (φ(2J − l)φ(2J − k)+ �1

l−k(−k)− �1
l−k(2J − k))

+�0
l−k(2

J − k)− �0
l−k(−k),

Y 1
J,k = −95(�0

l−k(2
J − k)− �0

l−k(−k)),

X2
J,k = �0

l−k(2
J − k)− �0

l−k(−k),

Y 2
J,k = 2J (φ(2J − l)φ(2J − k)+ �1

l−k(−k)− �1
l−k(2J − k))

+97(�0
l−k(2

J − k)− �0
l−k(−k)).

Then, we can get the values of xJ,k and yJ,k from Eqs. (36) and (37). After that, we get
the numerical solution of system (28) through (29). Comparisons between the exact
solution and the numerical solution are shown in Tables 1 and 2, and Figs. 2 and 3.

4 Optimizing solutions via the Lagrange multiplier

It is easy to find that the numerical solutions of system (28) are good in the entire
range of time t except for the initial time t = 0. This is because xJ,k and yJ,k determi-
ned by Eqs. 36 and 37 generally do not satisfy the initial condition and also because
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Fig. 2 Comparison of the exact solutions with the results obtained by Haar wavelet and Daubechies wavelet
with J = N = 4, L = 4
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Fig. 3 Comparison of the exact solutions with the results obtained by Daubechies wavelet with J = N = 5,
L = 4

the system is very stiff near the initial time. In the following, we use the constrai-
ned optimization method via the Lagrange multipliers to reduce the computing errors
significantly. Constrained optimisation is a powerful and versatile technique for
solving cost minimization problem.
Let us start from Eqs. 31–33 and rearrange them into the matrix equation form as

AX = 0 (38)
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where

A =
(

a11 a12
a21 a22

)

and

a11 = (c1
J,l,k + c0

J,l,k)l,k, a12 = (−95c0
J,l,k)l,k,

aJ,l,k = (c0
J,l,k)l,k, a22 = (c1

J,l,k + 97c0
J,l,k)l,k, l, k = 2 − L , . . . , 2J − 1,

X = [X1, X2]T , X1 = (xJ,k)k, X2 = (yJ,k)k .

Then the cost function to be minimized is defined by

G(X) = (AX)T AX, (39)

the constraints have the following form

XT
1 Z1 = 1, XT

2 Z2 = 1, (40)

and the objective function is given by

F(X, λ1, λ2) = (AX)T AX + λ1(XT
1 Z1 − 1)+ λ2(XT

2 Z2 − 1), (41)

where λi , i = 1, 2 are the Lagrange multipliers. Appliying optimization theory, we
know that Eq. 41 implies

⎛

⎝
2A

T
A Z1 Z2

ZT
1 0 0

ZT
2 0 0

⎞

⎠

⎛

⎝
X

λ1
λ2

⎞

⎠ =
⎛

⎝
0
1
1

⎞

⎠ . (42)

From Eq. 42, we can get the optimized values of xJ,k and yJ,k . Then, we get the
optimized numerical solution for system (28) through (29). Because of the use of
optimization, the solutions obtained here are better than those obtained by using the
Daubechies wavelet method without optimization near the initial time. Refer to the
results shown in Tables 3 and 4 and Figs. 4 and 5.

5 Discussions

The results (such as Figs. 2, 3 and 5) reveal that the numerical solution can be improved
by increasing either the scale parameter J or the order parameter L .We also make the
following observations.

• Figure 2 shows that the method based on Daubechies wavelet (Dau) is much better
than the single-term Haar wavelet method (STHW) in the entire interval [0, 1],
except at the initial time instant t = 0. This has been explained at the beginning of
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Table 3 The values of x from OPDAUS and DAUS methods for L=4 and J=3

Method EXACTS OPDAUS DAUS

t=0.0 1.000000000000000e+000 9.999999999999992e−001 8.002033059382285e−001
0.125 1.574165520629585e+000 1.575024208288943e+000 1.592634154268434e+000
0.25 1.225966227040173e+000 1.203632754000326e+000 1.221290493826090e+000
0.375 9.547834576680082e−001 9.373647247549073e−001 9.514515082537287e−001
0.5 7.435861044954686e−001 7.302991587337776e−001 7.412328383885984e−001
0.625 5.791054404620863e−001 5.695124986482306e−001 5.775516262729533e−001
0.75 4.510077705127837e−001 4.447861731175914e−001 4.501220978634202e−001
0.875 3.512452048466444e−001 3.481719437454351e−001 3.509296510848822e−001
1.0 2.735500405846427e−001 2.733716955045099e−001 2.735440290699423e−001

Table 4 The values of y from OPDAUS and DAUS methods for L=4 and J=3

Method EXACTS OPDAUS DAUS

t=0.0 1.000000000000000e+000 9.999999999999999e-001 1.197998596464597e+000
0.125 −1.656395448677543e−002 −4.460043847567377e−002 −4.092022002223580e−002
0.25 −1.290490761490572e−002 −1.286821405778022e−002 −1.271886319519464e−002
0.375 −1.005035218597880e−002 −1.023043961806455e−002 −1.001279383485378e−002
0.5 −7.827222152583880e−003 −8.001947295498926e−003 −7.802514120888475e−003
0.625 −6.095846741706172e−003 −6.265708358594185e−003 −6.079490318693153e−003
0.75 −4.747450215924039e−003 −4.915156542873738e−003 −4.738127341331357e−003
0.875 −3.697317945754152e−003 −3.863690295246785e−003 −3.693996327369718e−003
1.0 −2.879474111417292e−003 −2.982567085698608e−003 −2.879410832313992e−003
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Fig. 4 Comparison of the exact solutions with the results obtained by Daubechies wavelet and OP-Dau
with J = 4, L = 4

Sect. 4 for the first method, and is also because we have fixed x(0) = 1, y(0) = 1
for the STHW method.

• Figures 4 and 5 show that the Daubechies wavelet method (DAU) does not work
well at t = 0 since the considered system is very stiff near the initial time. However,
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Fig. 5 Comparison of the exact solutions with the results obtained by Daubechies wavelet and OP-Dau
with J = 3, L = 6
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Fig. 6 Comparison of the exact solutions with the results obtained by Daubechies wavelet J = 3, L = 4
and initial condition x(0) = 1, y(0) = 0

wavelet-based method incorporated with optimization via the so-called Lagrange
multiplier (OPDAU) can significantly improve the numerical results at the stiff
part.

• It is also seen from Figs. 4 and 5 that for times far away from the initial time instant,
. the DAU method outperforms other methods; and
. the solutions from the Lagrange multiplier method (OPDAU) are also quite

acceptable, justifying the applicability of the proposed approach to general linear
stiff systems.
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Fig. 7 Comparison of the exact solutions with the results obtained by Daubechies wavelet J = 4, L = 4
and initial condition x(0) = 1, y(0) = 0

Fig. 8 Comparison of the exact
solutions with the results
obtained by Daubechies wavelet
J = 4, L = 4 and initial
condition x(0) = 1,
y(0) = 1/10
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• Figures 6–9 show that the nearer the initial value y(0) approaches to 0, the better
the numerical results of the system. And if y(0) = 0, the system is no longer a stiff
system.

• For the single-term Haar wavelet method, one has to redo the whole computing
procedure whenever N changes. In contrast, the computation of the connection
coefficients in this work is determined only by the order parameter L , implying that
we can compute the connection coefficients �n

k (x) off-line to build a library which
can be used later in on-line computation. This means that the Wavelet-Galerkin
scheme adopted in this work can significantly reduce the on-line computing time
for numerical solutions of differential equations/systems.
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Fig. 9 Comparison of the exact solutions with the results obtained by Daubechies wavelet J = 4, L = 4
and initial condition x(0) = 1, y(0) = 1/100

6 Conclusion

In this work, the Daubechies wavelet scheme has been adopted to solve linear stiff
systems and satisfactory approximations have been obtained. We have shown that
incorporation of the Lagrange multiplier based optimization into the wavelet approach
can improve the numerical solutions significantly at or near the initial conditions. With
the proposed approach, the solutions for times far away from the initial time instant
are also quite acceptable.
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Appendix: Values of θ1(x) for R L = 4 and L = 6

Table 5 Values of θ1(x) for L=4 and L=6

x L=4 L=6

0.0 0.000000000000000e+000 0.000000000000000e+000
0.5 2.901709006307399e−001 1.413146044791601e−001
1.0 8.496793685588863e−001 6.007415698311157e−001
1.5 1.077350269189626e+000 1.052908231945552e+000
2.0 1.016346035225553e+000 1.096711447148340e+000
2.5 9.985042339640733e−001 9.850661449026523e−001
3.0 1.000000000000000e+000 9.854867262024150e−001
3.5 1.003318342528402e+000
4.0 9.996590890072497e−001
4.5 9.999915083333543e−001
5.0 1.000000000000000e+000
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